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Structure

Most theory papers have a structure very similar to the following:

@ Introduction

@ Possibly: Theoretical Framework or Background
© Data and Descriptive Statistics

@ Empirical Framework

© Results and Discussion

@ Conclusion

The structure is not set in stone. Quite often you see 4 before 3.
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Identification Section

@ The core of an empirical paper. It can be quite long!
@ Structure
© Ideal experiment
@ Deviations
© Potential threats to identification (and how you solve them)
@ Equations (numbered!)
© Explain all variables, indices, and error term assumptions
@ Use all supporting evidence, also qualitative or anecdotal.
o Tip: Read identification sections using similar methods to yours. Craft your text after it.
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Further Reading

@ Bellamare, M. (2020): How to Write Applied Papers in Economics.
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http://marcfbellemare.com/wordpress/wp-content/uploads/2020/09/BellemareHowToPaperSeptember2020.pdf
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Importance

Tables are the most common way to present empirical research results.
Many readers will only read the introduction and then directly go to the tables.

Each table (or figure) needs self-explanatory notes, often including data sources.

These need to include all relevant information; the reader must be able to understand the
table without referring to the main body of the paper.
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Table Notes

Table 1: Local Labor Market Effects of Bonus Depreciation
(1) 2) ) (1) (5)
Employment

Exposure x Post 0.021**  0.019**  0.021** 0.018** 0.020*
(0.009) (0.007) (0.006) (0.006) (0.008)

Earnings

Exposure x Post 0.022*  0.023** 0.019*  0.017* 0.021*
(0.011)  (0.008)  (0.007) (0.007) (0.010)

Earnings-per- Worker

Exposure x Post -0.002  0.000  -0.005" -0.004™ -0.003
(0.003) (0.002) (0.002) (0.002) (0.003)
3-digit Industry-by-Year Fixed Effects  Yes Yes Yes Yes Yes
State-by-Year Fixed Effects Yes Yes Yes Yes
County Characteristics Yes Yes Yes
‘Winsorized Weights Yes
Dropping Small County-Industries Yes

Notes: This table shows difference-in-differences estimates from Equation 2 where f is not
allowed to vary by year. The outcomes are employment in the first row, earnings in the second,
earnings-per-worker in the third. Column (1) shows estimates with only 3-digit NAICS industry-
by-year fixed effects while column (2) adds state-by-year fixed effects. Column (3), the main
specification, adds county level economic and demographic characteristics as control variables.
The last two columns show robustness of the results to winsorizing the weights at the 5% level
and to dropping county-3-digit industries with less than 1,000 workers in 2001. The sample for
this table excludes 2002 as a transition year. Standard errors are clustered at the county level.
* p <010, ** p < 0.05, *** p < 0.01.

Source: Garrett et al. (2020)
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Some Tips

Font size must not cause eye strain.

Must convey takeaway within 10 seconds, without main text.

Avoid acronyms. Really!

Also avoid equation symbols or variables names without words to accompany them.
Label every column header.

Use as few decimal places as possible. Keep overprecision issues in mind.

If using IATEX, use the booktabs package.

Do you really want table? Perhaps a figure is better?
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https://mirror.informatik.hs-fulda.de/tex-archive/macros/latex/contrib/booktabs/booktabs.pdf
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General Thoughts

Two reasons for graphing your data:
© Graphical methods are important for understanding your data,

@ Good visualizations are key for getting your story across and making it memorable

Your paper should have...

» Fewer tables and more figures
> At least one really good figure that summarizes the paper (for tweets etc.)

@ The following slides are largely based on Paul Goldsmith-Pinkham'’s slides available here.
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https://github.com/paulgp/applied-methods-phd

Why use plots
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Why use plots
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@ All z variables have the same mean and variance.
@ Same is true for all y variables and their covariance.

— Same regression line, but relationships between x and y are very different!
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Visualizing a relationship

@ Intuitively, for many papers, we plot an State Average Credit Score
760+
outcome Y; and want to describe the
effect of D; 220 PRI
@ The line is a useful summary description -J‘_._ - K
of it, but the data already does a pretty 1 . Tl X
good job. Why do we need the line? ol . e e
6801 ‘ ‘ h ‘
0 .05 1 15 2

State Uninsurance Rate
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Visualizing a relationship

@ Intuitively, for many papers, we plot an Average Credit Score
outcome Y; and want to describe the
effect of D;

@ The line is a useful summary description
of it, but the data already does a pretty
good job. Why do we need the line?

o Well, sometimes we have a LOT more
data and it's harder to see the relationship

04
T

4 6
Local Uninsurance Rate

@ The line is an excellent summary
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Binscatter approach

}/i — f(D,“ 0) _|_ €; s (a) Wage Earnings
@ There are a number of ways to
approximate this function in the
econometrics literature

$20K

» One common approach is called
binscatter, which uses spaced bins to
construct means

$15K

Mean Wage Eamings from Age 25-27

$10K

@ Why is this useful? Well, much of the time 0
in our plots it is hard to see the underlying
conditional expectation function.

20

40 60
KG Test Score Percentile

Source: Chetty et al. (2011)
@ The dots reflects averages within 20

equally spaced quantiles
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Binscatter approach

@ Two things worth noting from this (very e
nice) graph

(a) Wage Earnings

» The R? is not enormous, which suggests
lots of unexplained variation

» We don't have a good reason for the bin
choice

$20K

$15K
@ In a discrete case, the bin choice is obvious

Mean Wage Earmnings from Age 25-27

@ So what's going on under the hood?

R?=0.05
S10K 7

0 20 80 100

40 60
KG Test Score Percentile

Source: Chetty et al. (2011)
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How a binscatter graph is made (Cattaneo et al. (2019)

Figure 1: The basic construction of a binned scatter plot.

® binscatter
— linear fit
L ] L]
> >
. . . .
. .
'y . ° L
o9 i ® LY . *
x x
(a) Scatter and Binscatter Plots (b) Binscatter and Linear Fit
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Cattaneo et al. “On Binscatter”

@ Paper provides several generalizations to
binscatter approach

o First contribution: highlight that the
“traditional” binscatter approach is
presenting a particular non-parametric
estimation

o Initially assumes that constant within bin

> Not crazy! But could do more.

@ Piece-wise functions can be made very

flexible

Prof. Dr. Dominika Langenmayr
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Cattaneo et al. “On Binscatter”

LaguLIL UL asiaovauues

@ Paper provides several generalizations to
binscatter approach

@ First contribution: highlight that the
“traditional” binscatter approach is
presenting a particular non-parametric >
estimation

@ Initially assumes that constant within bin

» Not crazy! But could do more.

@ Piece-wise functions can be made very x
flexible (a)p=1land s=0
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Cattaneo et al. “On Binscatter”

@ Paper provides several generalizations to
binscatter approach

o First contribution: highlight that the
“traditional” binscatter approach is
presenting a particular non-parametric
estimation

@ Initially assumes that constant within bin
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@ Piece-wise functions can be made very
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Cattaneo et al. “On Binscatter”

@ Second contribution: Choosing bins!

@ Reframe as non-parametric problem. Estimation problem is
tradeoff:

> bias (picking too few bins makes your function off)
» and noise (pick too many bins and they're very noisy)

@ In canonical binscatter, ~ n!'/3

» This is data driven tuning, so you tie your hands a bit
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Why was binscatter so successful?

@ As an intellectual history, binscatter approach is a very recent et
innovation in applied work =

> Became a staple of much of Raj Chetty and coauthors’ work ST

Dependent Varable “Anmvalized Excess Retrns

b L
@ Extremely successful as an example of improving our data e

visualization to communicate results T B G SR G o

cmm (0.0573) (0.0670) (©0.0412) (0.0446) (0.0760)

> The status quo of big regression tables is bad PR i BN s

@ Some more general points to improve visual presentation of wrwne e e um o o o

It (0.6087) ©5239) (0.6808) (10161} (0.8087)

resu S (0.6355) (©.7491) (©09179) (0.5778) (0.6349)
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Some goals

@ Minimize tables
@ Have describable goals for every exhibit

© Focus the reader and craft not-ugly figures
» Ideally beautiful, but at minimum not ugly

© Do not mislead your readers
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Some goals

@ Minimize tables
@ Have describable goals for every exhibit

© Focus the reader and craft not-ugly figures
» Ideally beautiful, but at minimum not ugly

© Do not mislead your readers

Within figures, Schwabish's guidelines are excellent:
@ Show the data
© Reduce clutter
© Integrate graphics and text
@ Avoid providing extraneous information
© Start with grey
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1. Minimize Tables

@ Tables suck but are important storage units of
information.

> They should be stored in an online appendix
@ Tables make it very hard to actually compare results
and contrast things

@ Tables also tend to report things that are
unnecessary
» The coefficient on the controls are usually not

interpretable in a causal way (Hiinermund and
Louw (2020))

» Why bother reporting them?

@ Even when not doing regressions!
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1. Minimize Tables
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1. Minimize Tables

Appendix Table A4: Correlates with reduction in collections debt at age 65 Figure 3: C ing zone isti with the reduction in collections
debt at age 65
Bivariate. Multivariate Post-Lasso
Covariate Estimate Type Estimate SE. Estimate SE. Estimate SE. Panel A: Demographic characteristics
Black (%) Per Capita 717 @77) 574 @28 623 (208 . .
Greater than high school education (%) Per Capita 130 (174) 4 486 (246) Buvariate | Mulivariate ][ Post-lasso |
Has any coverage (%) Per Capita 1200 (1.86) Black (%) -
Has Medicaid (%) Per Capita 675 (165)
Hospital beds per capita Per Capita 109 (14) Greater than high school education (%)
Income per capita Per Capita 190 079 Poverty rate (%)
Median house value Per Capita 1070 (1.88)
Hospital occupancy rate (%) Per Capita 636 (1.68) Income per capita
Physical disability (%) Per Capita a0 @) 741 (256)
Poverty rate (%) Per Capita 701 (234) 102 (216) Median house value:
Payment by charity care patients () Per Capita 152 (165) 270 (153) Physical disabilty (%) ES
Medicare spending per enrollee (§)  Per Capita 648 (2.08)
For-profit hospitals (%) Per Capita 1020 (196) 829 (197) Has any coverage (%)
Teaching hospitals (%) Per Capita 969 (151) .
Cost of charity care per patient day (§) _Per Capita 007 Gl 0% () 126 (21) Has Medicaid (%)
=54 00 0

7] =04 00 04 _ 04 00
Impact of 1 SD Change in Covariate

+ PerCapita 4 Per Newly Insured
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1. Minimize Tables

Appendix Figure A12: Correlates with reduction in collections debt at age 65, with Fixed

Effects

Panel A: Area-level demographic characteristics

Black (%)

Greater than high school education (%)
Poverty rate (%)

Income per capita

Median house value

Physical disability (%)

Has any coverage (%)

Has Medicaid (%)
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1. Minimize Tables

0.461
Black-
0.414
White Hispanie
0.36 Model
Other H Logit
B RF

0.356
White Non—-Hispanie

0.322
Asian

0.
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2. Describable Goals

@ When considering a figure, for most papers you
want the result to be obvious
> Research papers’ exhibits typically are not
“exploratory”
o If it is not immediately obvious what the goal of an
exhibit is, one of two things are likely occuring
> You have too much information, and the story you
are telling is lost
> You have too little information or highlighting of
the relevant piece that you're interested in
@ Jon Schwabish describes this as “preattentive
processing” — how do we emphasize certain pieces
of a figure for the reader?
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3. Craft not-ugly figures

@ There is huge variation in how much researchers
value figures

800
L

600
L

@ Nonetheless, there's almost no good reason to have
bad figures

400
L

@ Avoiding this entails a small amount of work for big
returns. For this example, we could: a7

@ Fix the scheme (e.g. blue on white is ugly) ol
@ Label our axes -5 5 s ros2 E i
© Make our color scheme clearer o yros2
© Thicken the line fit, and lighten the points

o Keep in mind that

@ 1in 12 men is color blind
© Many print in black and white

Fitted values
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3. Craft not-ugly figures

@ There is huge variation in how much researchers
value figures

@ Nonetheless, there's almost no good reason to have
bad figures
@ Avoiding this entails a small amount of work for big
returns. For this example, we could:
@ Fix the scheme (e.g. blue on white is ugly)
@ Label our axes
© Make our color scheme clearer
© Thicken the line fit, and lighten the points
o Keep in mind that
@ 1in 12 men is color blind
© Many print in black and white
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Making good figures is hard

Some suggestions:

@ Bar graphs are always good places to start. Make them horizontal (almost always) so that
your labels are readable.

@ Directly label on your figure as much as you can — it makes it much easier for the reader
to pay attention to what is going on

o Fix your units

» Round numbers, add commas, put dollar signs...

o Label your axes, but label your y-axis at the top of your graph rather than turned 90
degrees on the side

@ Use shapes, thickness, saturation, color, size, markings, position, sharpness... to highlight
things in your graphs
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Some Examples

Shares of Aggregate Income, 1962 and 2007

Aggregate income, by source

Government
employee Other
Other Social pensions 3';15 Social

|6°n\ curity

Security
0% Private

/6%

Government pensions
employee 9%
pensions

6%
Private
pensions
3%

Asset
income
15%

1962 2007

Source: Social Security Administration (2009).

Source: Schwabish (2014)
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Some Examples

Shares of Aggregate Income, 1962 and 2009
(Percent)

w1962 w2009

38

Social Security Earnings Asset income Private Government Other
pensions employee
pensions

Source: Schwabish (2014)
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Some Examples

Shares of Aggregate Income, 1962 and 2009

(Percent)
Government
Private  employee
Social Security Earnings Asset income pensions  pensions Other
1962 15 6 3
2009 1 9 9

Source: Schwabish (2014)
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Some Examples

Shares of Aggregate Income, 1962 and 2009

(Percent)

Social Security, 3() e
Earnings, 28

Other, 18

Asset income, 15

— ||

A 9
Government employee

Pensions, ( @

Private pensions, 3 e

1962 2009

Source: Schwabish (2014)
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Further Reading

Denny, Kevin (2021): Basic Stata Graphics for Social Science Students. UCD Geary
Insitute for Public Policy Discussion Paper Series, 2021/02.

@ Schwabish, Jonathan (2021): Better Data Visualizations: A Guide for Scholars,
Researchers, and Wonks.

Schwabish, Jonathan (2014): An Economist’s Guide to Visualizing Data. Journal of
Economic Perspectives, 28 (1): 209-34.

Healy, Kieran (2019): Data Visualization: A Practical Introduction.
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http://www.ucd.ie/geary/static/publications/workingpapers/gearywp202102.pdf
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Structure of Theory Papers

Most theory papers have a structure very similar to the following:

@ Introduction
@ Model Setup

» First general setup (describe the world in the model)
» Then individual parts (consumers, firms...)

© Equilibrium/Optimal tax structure/. ..
© Extension to xy
© Discussion

@ Conclusion

Prof. Dr. Dominika Langenmayr
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How to Write Theory

Motivate your assumptions.

Answer the following early on (in this order)
@ Who are the players?
@ What can they do?
© What do they know?
© What are their objectives?
@ Don't vary assumptions in the main text

» Say in a footnote what happens without it.
» Or in the discussion section.

Provide intuition for each result (and most equations).

Prof. Dr. Dominika Langenmayr
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Formal Things

Define all variables. Follow the literature in your choice of variables.

Number the equations (maybe not all).
Show your results

» Lemmata: intermediate results, “stepping stones”

» Propositions: Main results (2-4), need a proof, but also explain intuition in text
» Theorems: Very important propositions (rare)
>
>

Corollaries: Side statement that follow from a proposition/theorem, need a proof
Conjectures: no proof

The differences between them are often subjective.
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Further Reading

o Glaeser, Ed (2003): How to write a theory paper,
https://www.princeton.edu/~reddings/tradephd/Glaeser_Lecture_11.pdf

@ Varian, Hal (1989): What Use is Economic Theory?,
http://people.ischool.berkeley.edu/~hal/Papers/theory.pdf
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